Utility Contribution to Animal Contact Current (5)

Farm ____________________________ Date ________________

Address ____________________________ ____________________________

Personnel ____________________________ ____________________________

Shunt resistor value used for temporary load test. \(R_{\text{SHUNT}} = \underline{} \Omega \)

From 72 hour continuous recording of one-minute averaged voltage, the highest animal contact voltage (AcV) was:

Date and time highest animal contact voltage occurred:

Date = ___________ Time = ___________

Primary to reference voltage at that same time:
(Primary NEV test voltage) \(N_{\text{pEVT}} = \underline{} \) V

Following voltages are taken from temporary load test:

Animal contact voltage with all farm load off: \(\text{AcVo} = \underline{} \) V

Primary NEV with all farm load off: \(\text{NpEVo} = \underline{} \) V

Animal contact voltage with temporary load on: \(\text{AcVtemp} = \underline{} \) V

Primary NEV with temporary load on: \(\text{NpEVtemp} = \underline{} \) V

Calculate utility contribution to animal contact voltage (AcVu). See MPSC Stray Voltage Rule 7(3)(g)(i).
Note: Multiply \(\text{AcVtemp} \) and \(\text{AcVo} \) by the adjustment factor (AF) before inserting into equation.

\[
\text{AcVu} = V
\]

Calculate utility contribution to animal contact current (AcCu). See MPSC Stray Voltage Rule 7(3)(h).

\[
\text{AcCu} = A
\]

\[
\text{AcCu} \times 1000 = mA
\]

Is the utility contribution to animal contact current (AcCu) equal or greater than 1.0 mA?

__________ Yes ___________ No

October 2, 2008