Milk Pump & Receiver

Farm Name: ___________________________

Building: ___________________________

Area: ___________________________

Date: ____________

Milk Pump:

- **Voltage:** 120v, 208v, 240v, 480v
- **Phase:** □ single-phase □ 3-phase
- **Horsepower:** ______
- **Age of Pump (Yrs.):** ______
- **Variable frequency drive:** □ yes □ no

Facility Type:

- **Type of milking facility:** □ milking parlor □ stall barn □ Flat parlor
- **Number of milking units:** ______
- **Hours use/day:** Milking _____ Washing _____

Milk Cooling:

- **Plate cooler used to pre-cool the milk:** □ yes □ no □ other __________
- **Type of milk cooling:** □ instant cooler before tank □ cooling in bulk tank

Well:

- **Diameter of well casing:** □ 2 in. □ 3 in. □ 4 in. □ 5 in. □ 6 in. □ 8 in.
- **Well pumping capacity if known:** ______ gal/min

Plate cooler discharge water:

□ water livestock □ wash facilities □ flush floor □ Mist area □ Irrigate □ Drain/Dump

% use ____ % use ____

Notes: The milk pump operates approximately 25% of the milking time. The main purpose of installing a variable frequency drive on the milk pump is to pump the milk more slowly through the plate cooler to increase the efficiency of the plate cooler and reduce peak water demand on the pumping system. This option may be necessary when the well capacity is limited. The actual savings in energy for a VFD on the milk pump is questionable. The main benefit is reduced water consumption due to increased plate cooler efficiency. Milk pumping efficiency actually decreases as the pump rpm decreases.

If any portion of plate cooler discharge water is not reused, the operation may qualify for an NRCS EQIP Incentive Payment Program (Need to submit application. See details starting on page 52 of technical guide).

Comments: